Skip to main content

RAG Systems: Complete Guide

"RAG bridges the gap between static LLM knowledge and dynamic, domain-specific information."

Retrieval-Augmented Generation (RAG) enhances LLM capabilities by retrieving relevant context from external knowledge bases, enabling AI to access real-time, accurate enterprise private data.


Why RAG?

LLM LimitationRAG Solution
Knowledge cutoffProvides current information
HallucinationsGrounds responses in facts
No private data accessAccesses internal documents
Expensive fine-tuningNo model training needed

RAG Architecture Overview


Core Concepts Overview

1. Data Processing Pipeline

  • Document Loading: Multi-format support (PDF, HTML, Markdown, DOCX)
  • Intelligent Chunking: Semantic-based structured splitting
  • Metadata Extraction: Automatic and LLM-enhanced metadata
  • Batch Vectorization: Optimize API call costs

2. Vector Indexing

  • Embedding Models: OpenAI, BGE, Cohere model selection
  • Indexing Algorithms: HNSW graph indexing, IVF, PQ compression
  • Storage Optimization: Caching strategies, batch operations
  • Performance Tuning: Search speed vs recall trade-offs

3. Retrieval Strategies

  • Vector Search: Semantic similarity matching
  • Hybrid Retrieval: Combine keyword and vector search
  • Query Transformation: Multi-Query, Decomposition, HyDE
  • Intelligent Routing: Dynamic strategy selection based on query type
  • Re-ranking: Cross-Encoder precision improvement

4. Generation Enhancement

  • Prompt Engineering: Context injection strategies
  • Parameter Tuning: Temperature, Top-P, Top-K
  • Generation Modes: Refine, Tree Summarize, Multi-hop
  • Citation Generation: Answer sourcing and trustworthiness

5. Evaluation Framework

  • RAG Triad: Faithfulness, Answer Relevance, Context Precision
  • Retrieval Metrics: Recall, Precision, MRR, NDCG
  • Generation Metrics: BLEU, ROUGE, BERTScore
  • Evaluation Methods: Golden Dataset, LLM-as-a-Judge

Quick Start with Spring AI

@Service
public class RAGService {

private final ChatClient chatClient;
private final VectorStore vectorStore;

public String query(String userQuestion) {
return chatClient.prompt()
.user(userQuestion)
.advisors(new QuestionAnswerAdvisor(vectorStore))
.call()
.content();
}
}

Technology Stack

Vector Databases

DatabaseTypeUse Case
PgVectorPostgreSQL ExtensionMedium scale, existing PostgreSQL infrastructure
MilvusDistributedLarge-scale production
PineconeManagedRapid prototyping
ChromaLocalDevelopment and testing

Embedding Models

ModelDimensionsQualityCost
OpenAI text-embedding-3-small1536Excellent$0.02/1M tokens
OpenAI text-embedding-3-large3072Excellent$0.13/1M tokens
BGE-M31024Very GoodFree (self-hosted)
Cohere embed-v31024Excellent$0.10/1M tokens

Learning Path (Complete 9-Chapter Tutorial)

Phase 1: Foundation Building

1. RAG Foundation - Start Here

  • RAG core definitions and intuition
  • Vector space mathematical foundations
  • RAG taxonomy (Naive/Advanced/Modular/GraphRAG)
  • Spring AI architecture deep dive
  • Complete implementation guide

2. Data Processing Pipeline

  • Multi-format document loading (PDF/HTML/MD/DOCX/API)
  • Data cleaning and quality assessment
  • Intelligent chunking strategies (Semantic/Recursive/Parent-Child)
  • Automatic metadata extraction and LLM enhancement
  • Spring AI Reader hands-on implementation

3. Vector Indexing & Storage

  • Embedding model selection and comparison
  • Batch generation optimization and caching
  • HNSW indexing principles and tuning
  • Vector storage architecture design
  • Production environment optimization strategies

Phase 2: Retrieval and Generation

4. Retrieval Strategies

  • Similarity search fundamentals
  • Query transformation (Multi-Query/HyDE/Decomposition)
  • Intelligent routing and query classification
  • Hybrid retrieval (BM25 + Vector)
  • Re-ranking optimization (Cross-Encoder/Cohere Rerank)

5. Generation Strategies

  • Prompt engineering best practices
  • Context assembly and optimization
  • Generation parameter control (Temperature/Top-P)
  • Advanced modes (Refine/Tree Summarize)
  • Agentic RAG introduction

6. Evaluation Strategies

  • RAG Triad evaluation framework
  • Retrieval metrics (Recall/Precision/MRR)
  • Generation metrics (Faithfulness/Relevance)
  • Evaluation methods (Golden Dataset/LLM-as-a-Judge)
  • Observability tools (Arize/TruLens)

Phase 3: Advanced Techniques

7. Advanced RAG Techniques

  • Modular RAG architectures
  • Knowledge graph integration (GraphRAG)
  • Adaptive retrieval systems (Self-RAG/CRAG)
  • Fine-tuning fusion (RAFT/Domain Adaptation)
  • Performance optimization (Caching/Quantization)

Phase 4: Production Practice

8. Production Engineering

  • Serving architecture design (Streaming/Concurrency)
  • Performance optimization (Latency/Throughput)
  • Security guardrails (Content filtering/Safety)
  • Observability (Tracing/Metrics/Logging)
  • Continuous improvement loops

9. Best Practices

  • Complete workflow (16 steps × 4 phases)
  • Tool selection decision tree
  • Design patterns and anti-patterns
  • Testing strategies
  • Common pitfalls and solutions

Production Considerations

Key Production Considerations
  1. Chunk size matters - Too small loses context, too large reduces precision
  2. Metadata filtering first - Use metadata filters before vector search when possible
  3. Monitor retrieval quality - Track relevance of retrieved chunks
  4. Cache embeddings - Avoid re-computing for same queries
  5. Handle edge cases - Fallback strategy when no relevant documents found
  6. Streaming responses - User experience for large context scenarios
  7. Security guardrails - Prompt injection and sensitive information filtering
  8. Cost control - Token usage and API call optimization

Beginner Path (4 Days)

Day 1: Chapter 1-2 (Foundation + Data Processing)
Day 2: Chapter 3-4 (Vector Indexing + Retrieval)
Day 3: Chapter 5-6 (Generation + Evaluation)
Day 4: Chapter 9 (Best Practices)

Advanced Path (3 Days)

Day 1: Chapter 7 (Advanced RAG)
Day 2: Chapter 8 (Production Engineering)
Day 3: Chapter 9 hands-on project

Full-Stack Engineer Path (1 Week)

Complete all 9 chapters in sequence, each chapter includes:
- Theoretical foundations
- Spring AI code examples
- Production best practices
- Exercise projects

Additional Resources

Research Papers:

Official Documentation:

Evaluation Frameworks:

Tutorials and Courses:


Get Started

Choose your starting point:

  • Rapid Prototyping: Start with Chapter 2 and use off-the-shelf document loaders
  • Deep Understanding: Start with Chapter 1 and learn theoretical foundations
  • Production-Ready: Jump to Chapter 8 and Chapter 9
Need Help?

This documentation site features an AI Chat Assistant - click the chat icon in the bottom right corner to ask any questions about RAG!